ANISOTROPY OF THE PRANDTL - MEYER FLOW

A, L. Stasenko : UDC 533.6.011

Anisotropy of the free path length is introduced as a concept on the basis of which the two~
dimensional steady flow of the simple wave kind (Prandtl—Meyer flow) can be analyzed for
any power -law interaction between molecules.

i In the study of rapidly expanding gas streams (discharge of a jet into vacuum [1, 2], spherically sym-
metrical evaporation of a comet head [3], ete.), when the medium passes through all stages from a con-
tinuous one to a collisionless one, it is generally necessary to solve equations of kinetics [4-6] and this is
rather difficult, especially for an arbitrary flow geometry. A simple method of analysis has been proposed
in [7] in which the concept of the mean free path length /; is generalized and which consists of constructing
anl-surface (¢ denoting the path length anisotropy) whose variance from the /;-sphere would represent the
degree of local anisotropy. This generalization seems unjustified in the sense that anisotropy occurs notice-
ably within the flow regions where the gas-dynamic parameters vary appreciably along the path iength.
Thus, this method is, on the one hand, similar to the method of the indirect proof: the presence of a con-
tinuous medium at a given point is first assumed and then denied by the very shape of the I -surfaces, while,
on the other hand, this method may be treated as the zeroth approximation in some iteration process of
solving the relaxation model of the Boltzmann equation [8, 9] with the mean time between collisions 7 or the
mean (already anisotropic now) path length I = 7 {c) on the right-hand side. The effectiveness of this meth-
od hasbeen established by comparing the "boundary" of a continuous medium with the "frozen in" values of
the temperature and the Mach number obtained: a) by the method of I-surfaces [2, 7]; b) by the solution of
the Boltzmann equation for a spherical source [5]; and c¢) from experimental results [10].

In this article we will use the path length anisotropy for analyzing the two-dimensional classical
Prandtl —-Meyer flow, where the gas-dynamic parameters remain constant along the ¢ = const line in the
polar system of coordinates [11].

Let a simple inviscid and thermally nonconducting gas flow along a semiinfinite wall —© < r < 0, ¢
=3/27 (Fig. 1) at a constant velocity V, = apn (Map = 1). Beyond the edge of the wall it expands into vacu-
um and turns by some angle ¢! < 3/27 so that a gasless region (from the standpoint of the model of a con-
tinuous medium) is maintained between the wall and the last flow line.

Let a sample molecule move from point r, ¢ in the chosen system of coordinates, at a velocity £ = V
+ ¢ in the x-direction in this system or in the y-direction in the satellite system of coordinates moving
relative to the first one at a local macroscopic velocity V(r, ¢). Then n,(og), is the frequency of collisions
between the sample molecule and field molecules at point 1 ({ ); is the operator of space averaging the
thermal velocities of field molecules). The expression in [7]
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is the equation of the anisotropic path length for a sample molecule moving at the velocity c in the satellite
‘system of coordinates, and it becomes the well-known relation no v 2l; =1 for an isotropic path length 7;
(if ¢ = (¢) is chosen) in the case of a homogeneous quiescent gas of rigid molecules (o = o).

If the molecules have a concentric force field Fjj ~ ri_-s,\ then o ~ g™/ 8—1) 5o that og ~ gP, where
B =(—-5)/(s —1). We will also assume, for simplicity, the field molecules to have a thermal velocity
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Fig. 1. Schematic diagram of the flow.

Fig. 2. Lines [/l; for Maxwellian molecules (circles correspond tol/lj =1), » = 5/3,

Ma; =1 (¢° = 0§ =0, ¢! =m: 1) first Mach line; 2) ¢ =1/2m and {;/1, = 2; 3) ¢ = 2/37 and
1/l =4:4) ¢ =5/6rand [;/1, = 14.93; 5) ¢ = (1L — 1077 and [;/1, = 1.62-10%; 6) classical
boundary with the vacuum ¢! = 7,

so that (og)y = (og",, with g® = [£ — V;|. Only a slight error is incurred by this assumption, as has been
shown in calculations of a flow from a spherical source [12]. Then Eq. (1) becomes
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where [11]
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¥y, ¥y, and &; are calculated by letting ¢ = ¢, in the respective equations for &, ¥, and €. Equation (2) de~
termines the path length anisotropy in the z = const plane in the cylindrical system of coordinates r, ¢, z
— as a function of the exit point coordinates and the direction in which the sample molecule moves, [ =1,
¢, 0). The condition of reaching the classical boundary with vacuum @; = @' by the molecule determines
the point and the direction which correspond to collisionless motion.

The integral in (2) can be expressed in terms of elementary functions only for the flow region near
the boundary with vacuum ¢ = ¢! and @ = ¢! — ¢ « ¢! for 8 =0 or § =1 when 2/¢x — 1) =1 is a positive
integer. These cases correspond to Maxwellian (s = 5) or rigid (s = ) molecules (with i being equal to the
number of degree of freedom which a molecule has) and may be used for checking the numerical results
of calculations, :

It can be shown, specifically, that sample molecules having the mean thermal velocity ¢ = (¢) cannot
be found in the vacuum, since they are dispelled together with the macroscopic gas stream and "cooled
down" so much that they remain inside the continuous medium {¢g < ol and ay > 0). Sufficiently fast mole~
cules (c =q(c), q > 1), however, may cross the ¢ = ¢! line,
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Fig. 3. Lines !/1; for rigid molecules, Near the edge of the
half-plane (a): 1) ¢ =1/37 and Ij/1, = 1.54; 2) 1/27 and 2.82;
3) 2/37 and 8,0; 4) 5/ 67 and 57.68; 11/127 and 449.7; 6) (1
—10-2%)r and 2,06 -10%). Along the ¢ = const rays: 1) ¢ =1/27
and 1;/1, =2.82; 2) 3/4r and 17.84; 3) (1 — 10~2)7 and 2.06 - 10°
(magnified for clarity). Dotted line corresponds to q = 0.575,
solid line corresponds to g = 1.0, and dashed line corresponds
to q = 1.425.

A computer-aided solution of Eq. (2) for I/r has been carried out for flow regions far from the
boundary with the vacuum (where o is not small). Typical results for monoatomic Maxwellian and rigid
molecules are shown in Figs. 2 and 3 in the form of maps of lines representing the relative path length ]
/1 of sample molecules whose mean velocity is (c). For one of the radii r/I, = 10, these path lengths
have been plotted (dashed and dotted curves) also for molecules with velocities corresponding to the dis-
persion boundaries ¢ = (¢) * D =q(c), D? = (c?) — (c)? = (¢)?(87/8 —1) (q =1.425 and 0.575).

It is evident that for Maxwellian molecules the [-surfaces stretch considerably toward the vacuum
while the exit point approaches the classical boundary ¢! = 7 (¢ — 0)7 which has to do with a decrease in
the gas density along this direction, (We must bear in mind that the [~surfaces in Figs. 2 and 3 have been
plotted in the satellite system of coordinates and, indeed, lie inside the continuous medium to the left of
the ¢ = ¢! = T ray.)

In the case of rigid molecules, the shape of the I-surfaces depends also on the relative velocity of
the sample molecule; this fact, together the decrease in the density along ¢, makes the 1(9)/1; curves more
unpredictable. When ¢ = const, they more and more resemble a circle as the radius increases; when r
= const and ¢ — ¢! = 7, they shrink on the average (although! ~ o2 increases) and they become sharply
peaked and stretched under the angle 0 = 90 + 36° toward the continuous medium, When ¢ = {¢) + D and
q =1.425 ("hot" boundary of the dispersion region), there appears a pronounced elongation toward the
vacuum (¢ = 3/27), which indicates a tendency of sample molecules (g > 1) to leave the continuous medium.,

NOTATION

o, m are the collision section and mass of a molecule, respectively;

s is the exponent in the power-law relation between interaction force and intermolec-
ular distance; '

c, &, g=[E —E| are the thermal, total, and relative velocity of a molecule;

n,p, T,V are the numerical and mass per volume density, temperature, and macroscopic veloc-
ity of the gas, respectively;

a , is the velocity of sound;

% is the ratio of specific heats;

T, ¢, 2 are the cylindrical coordinates tied to the flow around a half-plane (z-axis along the edge);

B =(s-5)/(s—1);

q =c/{c);

Ma=V/a , is the Mach number;
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Subscripts

*

i

refers to the stagnation point;
refers to the entering stream.

Superscript

1

o o
P

o0 ~3

11.
12,

refers to a point along the path of a sample molecule.
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