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Anisotropy of the free path length is introduced as a concept on the basis of which the two- 
dimensional s teady flow of the simple wave kind (P rand t l -Meye r  flow) can be analyzed for 
any power -law interact ion between molecules .  

In the study of rapidly expanding gas s t r eams  (discharge of a jet into vacuum [1, 2], spher ical ly  s y m -  
"metrical  evaporat ion of a comet head [3], etc.), when the medium passes  through all s tages f rom a con- 
tinuous one to a coll is ionless one, it is general ly  neces sa ry  to solve equations of kinetics [4-6] and this is 
ra ther  difficult, especial ly  for  an a rb i t r a ry  flow geometry .  A simple method of analysis has been proposed 
in [7] in which the concept of the mean f ree  path length l i is general ized and which consists  of construct ing 
a n / - s u r f a c e  (/ denoting the path length anisotropy) whose var iance f rom t h e / i - s p h e r e  would r ep resen t  the 
degree of local anisotropy. This general izat ion seems unjustified in the sense that anisotropy occurs  notice-  
ably within the flow regions where the gas -dynamic  pa ramete r s  va ry  appreciably along the path length. 
Thus, this method i s ,  on the one hand, s imi lar  to the method of the indirect  proof: the presence  of a con- 
tinuous medium at a given point is f i r s t  assumed and then denied by the ve ry  shape of t h e / - s u r f a c e s ,  while, 
on the other hand, this method may be treated as the zeroth  approximation in some i terat ion process  of 
solving the relaxat ion model of the Boltzmann equation [8, 9] with the mean time between collisions ~ or the 
mean (already anisotropic now) path length 1 = ~ <c> on the r ight-hand side. The effect iveness of this meth-  
od hasbeen  established by comparing the "boundary~ of a continuous medium with the "frozen in" values of 
the tempera ture  and the Mach number obtained: a) by the method o f / - s u r f a c e s  [2, 7]; b) by the solution of 
the Boltzmann equation for a spher ical  source [5]; and c) f rom experimental  resul ts  [10]. 

In this ar t icle  we will use the path length anisotropy for analyzing the two-dimensional  c lass ica l  
P r a n d t l - M e y e r  flow, where the gas -dynamic  pa ramete r s  r emain  constant along the (p = const line in the 
polar sys tem of coordinates [11]. 

Let  a simple inviscid and thermal ly  nonconducting gas flow along a semiinfinite wall - ~  < r < 0, (p 
= 3 /2~  (Fig. 1) at a constant veloci ty V n _ a n (Ma n _> 1). Beyond the edge of the wall it expands into vacu-  
um and turns by some angle (pl < 3 /2~  so that a gas less  region (from the standpoint of the model of a con- 
tinuous medium) is maintained between the wall and the last  flow line. 

Let a sample molecule move f rom point r ,  ~0 in the chosen sys t em of coordinates,  at a veloci ty ~ = V 
+ c in the x-d i rec t ion  in this sys tem or in the y-d i rec t ion  in the satellite sys tem of coordinates moving 
relat ive to the f i r s t  one at a local macroscopic  veloci ty V(r, q~). Then n 1 <crg> 1 is the frequency of collisions 
between the sample molecule and field molecules at point 1 ( < )  t is the operator  of space averaging the 
thermal  velocit ies of field molecules).  The express ion  in [7] 

t 

~ n l . < ~ g > l  d g  = 1 (1) 
C 

0 

is the equation of the anisotropic path length for a sample molecule moving at the velocity c in the satelli te 
s y s t e m  of coordinates,  and it becomes the well-known relat ion n(r0~f2/i = I for  an isotropic  path length l i 
(if c = (c> is chosen) in  the case of a homogeneous quiescent gas of rigid molecules  (a = a0). 

If the molecules have a concentr ic  force field Fij ~ r 7s, then a ~ g - t / ( s - i )  so that ag  ~ gB, where 1j 
fl = (s - 5 i / ( s  - 1). We will also assume, for simplicity,  the field molecules to have a thermal  velocity 
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Fig. i 

Fig. i. Schematic diagram of the flow. 
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Fig. 2 

F i g .  2. L i n e s  l / l  i fo r  M a x w e l l i a n  m o l e c u l e s  ( c i r c l e s  c o r r e s p o n d  to 1 / l i  = 1), n = 5 / 3 ,  
Ma  i = l  (~o ~  i = 0 ,  got =70: 1) f i r s t M a c h t i n e ; 2 )  g o = l / 2 7 r a n d l i / l  , = 2 ;  3) go = 2 /  37r and 
l i / l  , = 4; 4) go = 5/67r and l i / l  , = 14.93; 5) go = (1 - 10-2)rr and l i / l  , = 1.62 �9 104; 6) c l a s s i c a l  
b o u n d a r y  wi th  the  v a c u u m  gel = 7r. 

s o  tha t  < a g ) l  = (~g~ wi th  gO = i~ - V i i .  Only  a s l i g h t  e r r o r  i s  i n c u r r e d  by  th i s  a s s u m p t i o n ,  as  has  been  
shown in  c a l c u l a t i o n s  of a f low f r o m  a s p h e r i c a l  s o u r c e  [12]. Then  Eq.  (1) b e c o m e s  

ur 

O 

w h e r e  [11] 
2 

P l  __  n l  = COS X--I  (])1; 
p, n .  

(y/r)[a -1 cos (cp - -  ~) - -  sin (r - -  9)1 

tg  (~1 - -  q)) = 1 -F (y/r) [e -~ sin (qD - -  ~) -4- cos (r - -  8)1 

= 9 - - a r c t g  - tg@ ; 

1 / V \ '  ~x l + 2 s i n ~ r 2 1 5  . 

e ~ 8 cos 2 (I) 

(3) 

gO \~ 1 1 2 
- i t ,  : + + ' - - -  r  ( , 1  - ,)  

EEl  

§ 2 sin ( $ i - -  O) - - - - 2  sin (~2-- O); q) = ( ~ - i - ) '  •  1 1/2 (~p 4- %); 
E 1 E 

@l, ~t, and et a r e  c a l c u l a t e d  by  l e t t ing  go = go1 in the r e s p e c t i v e  equa t ions  fo r  @, r and e. E q u a t i o n  (2) d e -  
t e r m i n e s  the path  length  a n i s o t r o p y  in  the z = c o " s t  p lane  in  the c y l i n d r i c a l  s y s t e m  of c o o r d i n a t e s  r ,  go, z 
- as  a func t ion  of the ex i t  po in t  c o o r d i n a t e s  and the d i r e c t i o n  in  which  the s a m p l e  m o l e c u l e  m o v e s ,  l = l (r,  
go, 0). The  cond i t ion  of r e a c h i n g  the c l a s s i c a l  b o u n d a r y  with  v a c u u m  got = got by  the m o l e c u l e  d e t e r m i n e s  
the po in t  and the d i r e c t i o n  which  c o r r e s p o n d  to c o l l i s i o n i e s s  mot ion .  

The  i n t e g r a l  in  (2) can  be e x p r e s s e d  in  t e r m s  of e l e m e n t a r y  func t ions  on ly  fo r  the f low r e g i o n  n e a r  
the b o u n d a r y  wi th  v a c u u m  go = gel and a = got _ go << gel for  fl = 0 or  fl = 1 when 2 / ( ~  - 1) = i i s  a p o s i t i v e  
i n t e g e r .  T h e s e  c a s e s  c o r r e s p o n d  to M a x w e l l i a n  (s = 5) o r  r i g i d  (s = ~) m o l e c u l e s  (with i be ing  equa l  to the 
n u m b e r  of d e g r e e  of f r e e d o m  which  a m o l e c u l e  has)  and m a y  be used  f o r  c h e c k i n g  the n u m e r i c a l  r e s u l t s  
of c a l c u l a t i o n s .  

I t  can  be shown,  s p e c i f i c a l l y ,  tha t  s a m p l e  m o l e c u l e s  having  the m e a n  t h e r m a l  v e l o c i t y  c = <c> cannot  
be  found in  the  v a c u u m ,  s i n c e  they  a r e  d i s p e l l e d  t o g e t h e r  wi th  the m a c r o s c o p i c  g a s  s t r e a m  and "coo led  
down" so  much  tha t  t hey  r e m a i n  i n s i d e  the con t inuous  m e d i u m  @1 < got and eq > 0). Su f f i c i e n t l y  f a s t  m o l e -  
c u l e s  (c = q<c>, q > 1), h o w e v e r ,  m a y  c r o s s  the  ~o = r l ine .  
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Fig. 3. Lines l / l  i for  rigid molecules.  Near the edge of the 
half-plane (a): 1) go = 1/37r and l i / l  , = 1.54; 2) 1/27r and 2.82; 
3) 2/37r and 8.0; 4) 5/67r and 57.68; 11/12rr and 449.7; 6) (1 
7- 10"2) 7r and 2.06. 106). Along the go = const  rays :  1) go = 1/27r 
and l i / l  , = 2.82; 2) 3/47r and 17.84; 3) (1 - 10-2)~r and 2.06". 106 
(magnified for clarity).  Dotted line corresponds  to q = 0.575, 
solid line corresponds  to q = 1.0, and dashed line cor responds  
to q = 1.425. 

A computer-a ided solution of Eq. (2) for l / r  has been car r ied  out for flow regions far  f rom the 
boundary with the vacuum (where a is not small).  Typical resul ts  for monoatomic Maxwellian and rigid 
molecules  are shown in Figs.  2 and 3 in the fo rm of maps of lines represent ing the relat ive path length l 
/ l  i of sample molecules  whose mean veloci ty is (c>. For  one of the radii r / l ,  = 10, these path lengths 
have been plotted (dashed and dotted curves) also for molecules  with velocit ies corresponding to the d is -  
pers ion boundaries c = (c) • D = q(c>, D 2 = (c 2> _ (c) 2 = (c)2(37r /8_  1) (q = 1.425 and 0.575). 

It is evident that for  Maxwellian molecules  t h e / - s u r f a c e s  s t re tch  considerably toward the vacuum 
while the exit point approaches the c lass ica l  boundary gol = 7r (~ --- 0)~ which has to do with a decrease  in 
the gas density along this direction. (We must  bear  in mind that the l - s u r f a c e s  in Figs.  2 and 3 have been 
plotted in the satelli te sys t em of coordinates and, indeed, lie inside the continuous medium to the left of 
the g0 = gol = ~ ray.) 

In the case of rigid molecules,  the shape of the l - s u r f a c e s  depends also on the relat ive velocity of 
the sample molecule;  this fact, together the decrease  in the density along go, makes the l ( O ) / l  i curves more  
unpredictable.  When g0 = const, they more  and more  resemble  a c i rc le  as the radius increases ;  when r 
= const and go ~ cp 1 = v, they shr ink on the average (although l ~ ~-2 increases)  and they become sharply  
peaked and s t re tched under the angle 0 = 90 + 36 ~ toward the continuous medium. When c = (c) + D and 
q = 1.425 (nhot" boundary of the d ispers ion region), there appears a pronounced elongation toward the 
vacuum (0 ~- 3/2rr), which indicates a tendency of sample molecules (q > 1) to leave the continuous medium. 

~, m 

S 

o, t ,  g = 17 -71 
n, p, T, V 

a 

q,r 

r ,  go, z 
/3 = ( s  - 5 ) / ( s  - 1 ) ;  

q = c / < c >  ; 

Ma = V / a  

N O T A T I O N  

are the col l is ion sect ion and mass  of a molecule, respect ively;  
is the exponent in the power- law rela t ion between interact ion force  and in te rmolec-  
ular distance; 
are th~ thermal,  total, and relat ive veloci ty of a molecule; 
are the numer ica l  and mass  per volume density,  temperature ,  and macroscopic  ve loc-  
ity of the gas, respect ively;  
is the veloci ty of sound; 
is the ra t io  of specific heats;  
are the cyl indrical  coordinates tied to the flow around a half-plane (z-axis along the edge) ; 

is the Mach number; 
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cri = q)i + ~ i  - ~ / 2 ;  
~ i  = a r c s i n  M~ i; 

~o = I r /2  - ~ i ;  

[ q)i ~,•  1 ] arcsin 

q)l = q)m -- ffi; 

= ~ ( •  

e m  T \~---2T/ " 

= ( 8 ,T ]'/, 

I/2 (• - -  I) (M2n - -  I) ] ' / '  ] 

S u b s  

i 

cripts 

refers to the stagnation point; 
refers to the entering stream. 

S u p e r s c r i p t  

1 r e f e r s  to  a p o i n t  a l o n g  the  p a t h  of a s a m p l e  m o l e c u l e .  
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